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NOMENCLATURE

Aa

Ap

At

AR

b

C

el
Cm

c,
d

F
h

M

P

qco
r

Re

8

SI

t

V

y_
v_
V_

W

X

X

Y
cross-sectional area of airfoil

(perpendicular to wing span)

planform area of wing (cs for rectangular
wing) z

cross-sectional area of tunnel (bh for

rectangular tunnel)

Aspect ratio, 2s/c a

test-section breadth parallel to airfoil /3

span (double, if half-span model) F

airfoil chord 6
chord force coefficient, chord

force/ Apqcc 8E
drag coefficient, drag/Apqcc

lift coefficient, liftlApqoo 60

moment coefficient, moment/cApqoo 61
normal force coefficient, normal

force/Apqoo A

pressure coefficient, (p - Poo ) / qoo e
distance from airfoil to nearest wall

ratio of ellipse chord to ellipse chord plus

fin A
function defined by equations (A-26)

test-section height (perpendicular to
airfoil span) #

function of fitting ellipse, defined by u

equation (3)

Mach number P
static pressure

dynamic pressure, _pV_zl2 7-

ratio of nose radius to airfoil chord cr

Reynolds number, cVoe/u X

airfoil span (half-span, if mounted on
wall) Subscripts

function defined by equations (A-26) oo
airfoil thickness u

velocity along airfoil surface b

velocity in free-stream direction sc
velocity in vertical direction 0

free-stream velocity

test-section width parallel to airfoil span
coordinate in free-stream direction

coordinate along airfoil chord

coordinate along test-section width

parallel to airfoil span

coordinate along test-section height
coordinate normal to airfoil chord

airfoil angle of attack

compressibility factor, (1- M2u)1/2

circulation

offset correction to solid blockage,

defined by equation (A-14)

mean lift interference parameter for

elliptic spanwise loading

upwash interference at a lifting line

upwash interference associated with
streamline curvature due to finite chord

corrected - uncorrected value

blockage factor

solid blockage due to angle of incidence,
defined by equation (A-15)

test-section shape parameter, defined by

equations (A- 18) and (A- 19)

function of fitting ellipse, defined by

equation (4)

fluid kinematic viscosity
nh/b

fluid density

quantity appearing in equation (2),

, 2(c12span ratio, _-g g

span ratio, 2s/b

free-stream value
uncorrected value

blockage-corrected value
streamline-curvature-corrected value

value of quantity at zero lift
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SUMMARY

A NACA 0015 semispan wing was placed in a

low-speed wind tunnel, and measurements were made

of the pressure on the upper and lower surface of

the wing and of the velocity across the vortex trail-

ing downstream from the tip of the wing. Pressure
data were obtained for both 2D and 3D configura-

tions. These data feature a detailed comparison be-

tween wing tips with square and round lateral edges.

A two-component laser velocimeter was used to mea-

sure velocity profiles across the vortex at numerous

stations behind the wing and for various combinations

of conditions. These conditions include three aspect ra-

tios, three chord lengths, a square- and a round-lateral

tip, presence or absence of a boundary-layer trip, and

three image plane positions located opposite the wing

tip. Both pressure and velocity measurements were

made for angles of attack of 4 ° < a < 12° and for
Reynolds numbers of 1 × 106 _< Re _< 3 x 106.

The addition of a round-lateral edge to the wing

tip was found to eliminate the secondary vortex near

the wing tip, but had little effect on the downstream
characteristics of the trailing vortex. The increase in

wing lift near the tip because of the presence of the

trailing vortex was evident in the surface pressure,

but was not captured by circulation-box measurements.

The circumferential velocity within the vortex was

found to reach free-stream values and produce core

rotational speeds as high as 44, 000 rpm. The stream-

wise velocity within the viscous wake that is shed from

the wing was observed to form islands of peak veloc-

ity in the spiraling sheet that feeds into the trailing
vortex. Near the wing, the trailing vortex is asymmet-
ric and contains definite zones where the streamwise

velocity both exceeds and falls behind the free-stream
value. When referenced to the free-stream velocity,

the maximum vertical velocity of the vortex is directly

dependent on a and is independent of Re.

INTRODUCTION

The trailing vortex from a rotor blade can be a ma-
jor source of noise and vibration as it interacts with the

other blades of a rotor system (refs. 1 and 2). To study

these blade-vortex interactions, experiments are com-

monly attempted in ground facilities on geometrically
and aerodynamically "similar" models, with the notion

that the test results can be applied to the full-scale rotor

environment when the governing dimensionless scaling

groups are held constant. However, since the details
of the vortex formation and maturation process are not

well understood, there is some uncertainty about how

to formulate the relationships between various physical

quantities (ref. 3). Part of the difficulty in formulating

good theoretical models stems from the scarcity of re-

liable and complete experimental data that might offer

guidance and validation opportunities to the computa-

tional physicist (refs. 4-6). Fortunately, there is some
evidence that the structure of a trailing vortex from a

fixed wing is essentially the same as that from a rotor

(ref. 7). Furthermore, it has been reported that centrifu-

gal effects have little influence on the path of the tip

vortex from a rotor (ref. 8). These findings offer sup-

port for examining trailing vortices in relatively simple

fixed-wing experiments.

Trailing vortices owe their origin to viscosity and

the boundary layers that develop on lifting surfaces.

The pressure differential that exists between the lower

and upper surface of a wing drives a portion of the
vorticity-laden fluid in the boundary layer around the

tip and toward the upper surface (suction side) of the

wing. Streaklines on the upper surface and near the

leading edge will therefore show the flow near the tip to

be moving in an inboard direction. The boundary-layer

vorticity (called bound vorticity), which was initially

oriented parallel to the span of the wing, is redirected

and reorganized as the fluid undergoes a highly 3D de-

formation and mixing at the tip. Before the fluid near

the tip reaches the trailing edge of the wing, a pre-

vailing vortex emerges (although secondary ones may

also exist) that has separated slightly from the surface
(thus becoming a free vortex) and has a downstream

orientation; this is called the trailing vortex. The sur-

face streaklines near the trailing edge will be driven in
an outboard direction under the action of the vortex.

This vortex also causes the pressure to be reduced on

the surface of the wing beneath it and is therefore re-

sponsible for an increase in lift in this region. If the

path of the vortex were to be extrapolated back toward
the surface of the wing, it would appear to originate
from a location around midchord at low a and move

progressively toward the leading edge as c_ increased
(ref. 9).

As the trailing vortex passes off the surface and

enters into the wake, it may already be carrying about

half of the wing circulation (ref. 10). The remainder

of the vorticity generated on the wing is contained in



the viscouswakethat is shedalongtheentiretrail-
ing edge.The vorticitynearthewing tip entersthe
innermostpartof the trailingvortex,whilevorticity
shedat increasingdistancesfrom the tip appearsin
thevortexat increasingradialdistancesfromthecen-
ter(ref. 11).Thedifferencebetweenthecomponentof
velocityin thestreamwisedirectionandthefree-stream
velocitytendsto reachamaximum(eitheranexcessor
adeficit)atthecenterof thevortex,thelikelihoodof a
deficitconditionincreasingwithdecreasinglift-to-drag
ratio(ref. 12). Theangleat whichtheviscouswake
is shedfromthewingisequalto theaerodynamican-
gle of attack(ref. 13).Thiswakeformsa continuous
sheetwhichisattachedto andisrapidlydrawntoward
thetrailingvortexalonga helicalcontour.Detailsof
the roll up andthe maximumcircumferentialveloc-
ity in thevortexat differentpositionsdownstreamof
thewinggreatlydependon thespecificloadingdistri-
butionthatexistsalongthewing span(refs. 14-17).
Assumingthereareno other,competing,vorticesin
the flow, it is oftenassumedthat thetrailingvortex
eventuallycapturesall of thevorticityfrom thewing
(ref. 18reportsthat90%of themeasurablecirculation
in thewakeis containedwithin thetrailingvortexby
z/c = 1). As the trailing vortex moves downstream,

the path of the vortex moves inboard about 5% to 10%

of the wing span (ref. 13). Trailing vortices are known

to persist for many spanlengths behind the wing. This

longevity, which is significant compared to swirling

flows (perhaps 100 times longer for a vortex), is at-

tributed to the rapid decay of turbulence and a corre-
sponding decrease in eddy diffusion within the vortex

(ref. 19).

Although trailing vortices have been studied for

many years, and certain general characteristics are well

known, there are a variety of different accounts that

have been given for the details of their formation and
downstream development as well as the parameters

on which they scale. For example, in descriptions of

where tip vortices originate, it has been reported that

they sometimes develop at the tip (when a and Re are

high) and sometimes develop farther inboard (ref. 20).

It has also been reported that two tip vortices can oc-

cur simultaneously, one forming at the front corner of
a wing from flow along the pressure side and the other

forming farther inboard from flow along the suction

side, both with the same apex (ref. 21). Another ex-
ample deals with the characteristic length on which the

core size scales. Some investigators have claimed that

the correct scaling length is the boundary-layer thick-
ness on the pressure side of the wing, but others dis-

agree (ref. 22). The more popular lengths that appear
in the literature are the wing span (refs. 17 and 23),

the wing chord (refs. 24 and 25), and the product of

the wing chord and the lift coefficient (ref. 3). An-
other issue is the total circulation that is contained in a

trailing vortex from a wing. Whereas many investiga-

tors have assumed that the total circulation is equal to

the midspan value (refs. 17, 26, and 27), others have

claimed that the circulation is not necessarily equal

to the midspan value (ref. 22), or that it is somewhat
less than the theoretical value because of dissipation

(ref. 20), or that it is equal to half (or nearly half) of

the midspan value (refs. 14, 20, 28, and 29). Although

other examples of controversy can be found in the lit-

erature (such as how to define the Reynolds number, or

whether it is even an important parameter, and how to

describe the shape of the circumferential velocity pro-
file outside the core), it is already sufficiently evident

that there is much more to learn about trailing vortices.

In the present study, a NACA 0015 wing was
placed in a steady stream so that measurements could

be made of the pressure on the upper and lower surface

of the wing and of the velocity across the vortex trailing

downstream from the tip of the wing. Pressure data,
obtained for both 2D and 3D configurations, feature

a detailed comparison between wing tips with square
and round lateral edges. A two-component laser ve-

locimeter was used to measure velocity profiles across

the vortex at numerous stations behind the wing and
for various combinations of conditions. These condi-

tions include three aspect ratios, three chord lengths,

a square- and a round-lateral tip, presence or absence

of a boundary-layer trip, and three image plane po-

sitions located opposite the wing tip. Both pressure
and velocity measurements were made for angles of

attack of 4 ° <_ c_ < 12 ° and for Reynolds numbers of
1 × 106 <_ Re _< 3 × 106.

Because of the relative size of the supporting end-

plate (which also served as a splitter plate), both pres-

sure and velocity data were affected to some extent

by the flow confinement imposed by the wind-tunnel

walls. This is not of any concern as long as compar-
isons are made between cases within this experiment.

For interpretation of these results in the light of other

experimental data, or comparison with numerical cal-

culations that are performed in free air, wall corrections
are recommended. Since the available methods for de-

termining wall corrections are not exact, the data are



presentedasmeasured,withoutintroducinganyques-
tionable(andirreversible)alterations.Shouldcircum-
stanceswarrantanattemptto makewall corrections,
theproceduresfor both2Dand3Dcasesarepresented
in theappendix.

TEST DESCRIPTION

Facility and Model

The experiment was conducted in the NASA Ames

7- by 10-Foot Subsonic Wind Tunnel No. 2 under the

authority of the U.S. Army Aeroflightdynamics Direc-

torate. This is a closed-circuit atmospheric tunnel with

a maximum speed of 375 fps. The free-stream veloc-

ity in the tunnel was measured by a pitot-static probe
located at the center of the entrance to the test section.

The free-stream temperature was measured with a ther-

mistor located in the aft portion of the test section.
All of the wing configurations studied were rect-

angular and had a constant and untwisted NACA 0015

profile along the entire span. The lateral edge of each

wing tip was machined to a flat or square face, but

could be made round by the addition of an end cap

(fig. 1). All wing elements were made from black an-

odized aluminum. Three wings were made with the

same aspect ratio, AR = 6.6, but with chord lengths

of 12.0, 16.2 and 20.4 in. (fig. 2). The aspect ratio

is defined in terms of the distance between wing tips,

even though only half a wing physically existed in this

experiment. Only the largest wing was instrumented

for surface pressure measurements. Two spanwise ex-

tensions (each 9 in. in length) were made for the small-
est wing to enable aspect ratios of 8.1 and 9.6 to be
studied.

The wings were mounted on a splitter plate (a sup-

porting endplate extending from floor to ceiling) that

was positioned I ft away from the side wall of the

tunnel (fig. 3). This wing support, which was used to

test all wings, could be rolled along a track to place
the wing at any streamwise position in the test section.

The endplate was 2.5 in. thick and 48 in. wide in
the streamwise direction (formed on a 2-in. thick alu-

minum core) to which was attached a 4-in. elliptical

fairing along the leading edge and a 7-in. elliptical fair-

ing along the trailing edge. An image endplate (with

a wood core) of the same shape as the support end-

plate was installed at positions opposite to the wing tip
during special studies.

In all cases, the angle of attack was set by rotating

the wing about its quarter-chord axis. The quarter-
chord axis of the wings passed through the support

endplate at a point 23 in. from the leading edge of the

elliptical fairing (back 39% of the total endplate width).

The relative sizes of the various wings and extensions

are indicated in a plan view of the test section shown

in figure 4.

Positioning the image endplate against the tip of

the largest wing prevented the formation of the trail-

ing vortex, so that 2D pressure measurements could be

obtained (fig. 5(a)). Without the image endplate, the
tip of this wing was 1.9 c from the opposte test-section

wall. To ascertain the effect of the image vortex on the

trailing vortex from the large wing, the image endplate

was placed at two specific distances away from the

tip of the small wing. These two positions of the end-

plate relative to the small wing corresponded to integer

multiples (1 or 2 times, and 3 times when completely

removed) of the distance of the large wing from the

test-section wall (fig. 5(b)).

Pressure Measurements

Wing pressures were measured at 320 stations on

the largest model (c = 1.70 ft), over an area favor-

ing the leading edge and the tip of the wing. The

matrix of coordinates included 14 span locations and

18 chord locations (fig. 6). Tubes were routed from

each measurement location to a place outside the test

section where they were connected to 12 scanivalves.

Each scanivalve contained a 5-psi differential-pressure

transducer and was arranged so that one side could be

selectively exposed to any one of 24 ports. One partic-
ular port on each scanivalve was reserved for calibra-

tions. The opposite side of each transducer was vented

to ambient conditions in the control room. Since only

a portion of the wing could be surveyed for any given

set of port assignments, tubes were selected depending

on whether emphasis was to be on full-span charac-

teristics or on obtaining a higher resolution over the

outer portion of the wing. The pressure transducers

were calibrated over a range of -4 psi < p < +1 psi

at a 0.1-psi interval. As these calibration pressures

were applied to the transducers, they were simultane-

ously measured and digitized by a calibrated pressure

analyzer.



Velocity Measurements

Two components of velocity (oriented normal to

the span of the wing) were measured with a two-color

laser-velocimeter (LV) system (fig. 7). An Argon-ion
laser was used with an etalon and a multiline mir-

ror to emit a predominately blue (4880-,_) and green

(5145-_) beam. The purpose of the etalon was to in-

crease the coherence length, to narrow the lasing band-

width, and to reduce mode hopping. After separating

the colors with a dispersion prism, the blue and green

beams were split into a four-beam matrix and directed

into a 3.75× beam expander. The set of four parallel

beams exited from the beam expander at a diametral
spacing of I31 mm and then entered a traversing ap-

paratus that consisted of two 200-ram mirrors and one

2286-mm focusing lens. A computer-controlled tra-

verse device was used to move the focusing lens (and

thus the measuring volume) over a 500- by 500-mm

area. The measurement-volume fringe spacings were
determined (from calibration) to be 8.90 #m in the

horizontal direction (blue beams) and 8.98 #m in the

vertical direction (green beams). The diameter of both
measurement volumes, based on an e-2 intensity fall-

off of a Gaussian beam, was calculated to be 0.3 mm,

and the length was similarly calculated to be 10 mm.

One beam of each color was frequency shifted using an

acousto-optic device (Bragg cell) in order to determine
the direction of flow.

A portion of the window in the near wall of the

test section was removed to provide a direct viewing
path into the wind tunnel. The clear opening eliminated

the possibility of window reflections as a source of

noise in the signals. Airflow through the opening was
minimal since the pressures in the test section and the

control room are nearly equal during steady tunnel op-
eration. The backscattered light was collected through

the sending optics, color-separated using dichroic mir-

rors, and focused onto photomultiplier tubes. The am-

plified signals from the photomultipliers were down-

mixed and then routed into signal processors (coun-
ters), which filtered and again amplified the signals

and timed the Doppler cycles.

The tunnel was seeded with a liquid consisting of

1 part glycerin to 3 parts water, by volume. The liquid

was atomized with a commercial seeder (which pro-

duced particles about 1-3 #m in diameter) and three

oil misters (which produced particles estimated to be

less than 5 #m). All four seeding devices were placed

in the settling chamber and allowed to continuously re-

plenish the atomized mixture that was being carried by
the flow around the entire circuit of the closed-loop tun-

nel. Seeding in this fashion provided a measurement

rate of about 150 samples/sec over most of the flow.

However, tunnel operation during August resulted in

a free-stream temperature increase from 65 °F in the

early morning to about 105 °F by noon. These higher

temperatures acceleraled the evaporation of water from

the particles, reducing their size to below what could

be detected and causing the measurement rate to fall

significantly. This obstacle was overcome by shifting

the hours of tunnel operation to earlier in the day.

Vortex Locator

Vortex meander is a familiar phenomenon in

trailing-vortex experiments, and has led to numerous

rapid-scan techniques for measuring the velocity pro-

file (refs. 23 and 30). The approach taken in this exper-
iment was to detect the passage of the vortex across a

given location and thereby establish a conditional sam-

pling criterion that could be imposed during the anal-

ysis phase. A vortex meter, consisting of a feathered

cruciform structure mounted on a bearing and attached

to a Hall-effect transducer (fig. 8), was mounted on the

survey apparatus and used to locate the center of the

trailing vortex and to track its meandering behavior.
The rotational action of the vortex on the vanes of the

meter produced a sinusoidal voltage output from the

transducer. The frequency of this signal increased as

the meter approached the center of the vortex; therefore
this was an effective method for statistically locating

the y and z coordinates of the trailing vortex at any

location downstream of the wing. Signal frequency

was converted into dc voltage and was recorded along

with all data related to the trailing vortex. Although

the tunnel was operating under steady conditions, a

sufficient level of disturbance may have existed in the

flow to account for the meandering path of the vortex
(refs. 19 and 30). The vortex was observed to move

laterally to a new location about once per second, with
an amplitude that increased with increasing distance

downstream of the wing tip.

Data Acquisition

Two computers were used to carry out the var-

ious censoring, managing, and numerical computing

4



tasksof this experiment.A PC wasusedfor con-
trol anddataacquisition(HP CPUandmultiplexer)
anda largemainframecomputer(VAX-785)wasused
for datareduction,archiving,andgraphicaldisplay
functions(fig. 9). Two inputlineswereusedfor the
VAX:onefor generalcommunicationandgraphics,the
otherfor datatransfer.Thisdivisionof tasksbetween
thetwo classesof computers(thePCandthemain-
frame)allowedthesmallercomputerto functionasa
"manager"--toresetswitchesandrepositiondevicesin
preparationfor newdatawhilea file thatwasrecently
transferredto thelargercomputerwasbeingconverted
intoengineeringunits,statisticallyanalyzed,andre-
turnedto a separatemonitor. Informationwasalso
displayedconcerningvarioustestparameters,warnings
aboutspecificanomaliesandnumerousautomaticde-
cisionsthatweremadebyeachcomputerorprocessor.

Aftersettingtheairfoilangleof attackandthetun-
nelfree-streamvelocity,thescanivalveswereindexed
to recordtheupper-andlower-surfacepressures.Se-
lectedportsweremonitoredto makecertainthatequi-
libriumhadbeenreachedbeforeanydataweretaken
afterindexingthescanivalvestoa newposition.Once
thefull setof datawasaccumulated(this tookabout
30min),thepressureswerereducedto coefficientform
sothatthechordwisedistributionsof pressureandthe
spanwisedistributionof lift couldbedisplayed.

LV measurementswereobtainedeitheralonga
contouraroundthewingat variousspanlocationsor
acrossthetrailingvortexat variousstreamwiseloca-
tions.Themeasurementgrid (fig. 10)waslocatedin
a space-fixedcoordinatesystemwith theoriginat the
trailingedgeof thewingtip (y = 0,z = 0) when the

wing was at zero angle of attack. The contour around

the wing was composed of 40 discrete points to form a

"circulation box" that was aligned with the free-stream

velocity (fig. 11). The trailing vortex was normally sur-

veyed at 41 points along a straight horizontal line (par-

allel to the airfoil span) across the core of the vortex
or at 160 points over an area normal to the free-stream

direction (fig. 12). The matrix of coordinates to be sur-

veyed was centered around the vortex core (which was

usually inboard from the wing tip and below the pitch
axis) and therefore appears offset from the coordinate

reference (y = 0, z = 0). In all cases, the survey co-

ordinates were placed in a file and the computer was

given the task of automatically positioning the probe
volume and acquiring the data. After collecting a total

of (typically) 1000 validated samples at a given loca-

tion, the computer would signal the traverse controller

to move to the next point of measurement. Following

a wait of 2 sec to allow any traverse vibrations to damp

out, the computer would begin accepting data again.

Specifying the actual coordinates at which the

trailing vortex was to be surveyed required that the
center of the vortex be known. The center of the vor-

tex was found by first positioning the vortex meter in

the approximately correct location indicated by the re-

sponse of the cruciform. The computer would then

reposition the meter over a predetermined number of

intervals in the y and z directions (centered around the

assumed location of the vortex) and then display the
matrix of responses. This procedure was found to be

effective in locating the statistical center of the vortex.

Based on this value for the vortex center, a new matrix

of coordinates was generated.

Because several hours might be required to com-
plete an LV survey of an extensive matrix of positions,

the manager computer was programmed to announce

the completion of various tasks by means of unique

audible signals. This allowed the test engineer to fo-
cus attention on an additional monitor where statistical

histograms and velocity profiles were being displayed.
Because of the automatic functioning of the entire data

acquisition and reduction procedure, and the audible

computer signals, fatigue was significantly reduced.

RESULTS AND DISCUSSION

Surface Pressure

Pressure measurements and calculated lift, drag,

and pitching moment coefficients are presented for both

2D and 3D wing configurations, with square- and round-

lateral tips, for angles of attack of 0 ° < c_ < 14° and
Reynolds numbers of I × 106 _< Re < 3 × 106 (ta-

bles 1-6). The coordinate system used for presenting

the pressure measurements, and the equation for defin-

ing the surface of the airfoil, are given in figure 13.

Load calculations- Since there was no provision

for making pressure measurements at either the leading

edge or the trailing edge, values at these two locations

were approximated so that more accurate lift, drag,

and pitching moment calculations could be made. The

leading-edge pressure coefficient was determined from

a theory that is applicable to thin symmetric airfoils
(ref. 31). In this theory it is hypothesized that the flow

around the leading edge of the airfoil is the same as

that for an ellipse (with a trailing fin) that has been

5



sizedto geometricallyapproximatetheleadingedge
of theairfoil. Thefirst stepis to determinetheangle
of attackfor thefinnedellipsethatproducesthesame
v/Vc_ as calculated for the actual airfoil at the same
-_/c. Based on the measured pressure coefficient at a

particular location near the leading edge, the velocity
is determined from

v = - Cp (incompressible) (1)

The angle of attack that yields the above v/Voo at this

particular _/c is found from

7d 2r / _/c

= (1+ T ) r/2

x(cosa + sina _F )
(2)

where -4- denotes that the expression following it is

added for the upper surface and subtracted for the lower
surface, and k is a function of the fitting ellipse and is

defined by

e 1 + 2) (3)k = +
4"

with

#=(e----_T2 )(1--e+_/1-e(l-r)2 2) (4)

and T = _ is the actual thickness of the ellipse (in

airfoil chords). For the NACA 0015 airfoil, the ratio of

the nose radius to the airfoil chord (r) is 0.0236 and the

ratio of the ellipse chord to the ellipse chord plus fin (e)

is 0.3. Using the a just calculated from equation (2),

the theoretical pressure at the leading edge is

Cp = 1 2(1 + 7-)2 sin2 a at _ = 0 (5)
r

With this estimate for the leading-edge pressure and

the three nearest data points on either side of-£/c = 0

(fig. 14), a quasi-Hermite spline fit (a continuous curve
with a continuous first derivative) is used to define

additional values around the leading-edge region of the
airfoil.

The trailing-edge pressure coefficient used was

simply the average of the: linear extrapolations from

the upper and lower surfaces (fig. 15). From the ap-

proximated values of Cp at the leading and trailing
edges, and the curve that was fit to the leading-edge

data in the Cp vs. 2/e plane, the original finite set of
actual data points was expanded to a 1,000-point set to

improve the accuracy and presentation of the results.

The pitching moment is defined about the quarter-
chord axis, and is taken to be positive when it produces
an increase in c_. The force and moment coefficients

were calculated from a trapezoidal-rule integration over

the expanded data set. The "local contributions" to
these integrals are shown in figures 16 (c_ = 0 °) and

17 (a = 12°) for equal increments of A_ (fcr Cn

and Cm) and equal increments of A2 (for Co). In

the a = 0 ° example, an interesting feature is found

in the Cp vs. 2/c curve. Starting at the leading edge

where Cp = 1.0, and moving along the upper surface,

three regions are encompassed by the time the complete
airfoil has been traversed and the curve closes at the

leading edge. The regions that are bound in a clock-

wise sense represent a negative chord force, and those

bound in a counterclockwise sense represent a positive

chord force. In this case, the positive and negative con-
tributions sum to zero. In the a = 12° example there

is a sizable negative chord force as a result of the low

pressure distribution over the forward projection of the
airfoil. Since only the pressure has been considered,

the complete chord force would no doubt be more pos-

itive (in all cases) if the viscous component had been
available for inclusion. Because the incremental chord

force is derived from the local pressure that is acting on

an elemental-surface projection in the chord direction,

and since ACe is plotted for equal increments of A2,

there will necessarily be a discontinuity in the curve

at maximum thickness (2X/e) where the surface pro-

jection changes direction (surface slope changes sign).

The discontinuity is not symmetric about A2 = 0 be-

cause of the difference in the average pressure over

these adjacent segments of the surface.

2D wing- A 2D configuration was established by

positioning the image endplate against the tip of the

large wing (fig. 5(a)). Representative pressure distri-
butions over the central 45% of the wing are shown for

three angles of attack and two Reynolds numbers in fig-

ure 18. Recall that the leading- and trailing-edge values

(open symbols) are estimates based on data for neigh-

boring locations. The chordwise pressure distribution
differs little between the three span stations shown,
even for the a = 12° case. However, subtle differ-

ences in pressure can result in large variations in the
force and moment loads when these pressures are in-

tegrated over the surface. When the lift at all 12 span



stations(includingthoseneartheendplatewheresig-
nificantboundary-layerinteractionsareevident)iscal-
culated,it canbeseenthatsomedegreeof variation
is presentalongthe entirespan(evenover thecen-
tralportion)andthatthevariationbecomesquitepro-
nouncedwhena > 10° asthestallangleisapproached
(fig. 19).Thesolidline accompanyingtheresultsfor
eachc_ represents the average value for the lift over the

part of the span from 0.09 < y/8 < 0.90 (this segment

excludes the five points near the tip). The integrated

loads over the angle range 0 ° < o_< 14° indicate that

the drag and pitching moment are even more sensitive

to span location than is the lift (fig. 20). Since the

drag and moment are usually small for angles below
stall, the scales that were used to plot these loads have

exaggerated the impact of spanwise differences in the

leading-edge pressure (mostly affecting the drag) and

the center of pressure (mostly affecting the pitching

moment).

3D wing- The 3D configuration was investigated

in two stages. During the first stage, measurements

were made over the full wing span, with a square tip

only. During the second stage the pressure-tube con-

nections were reconfigured to concentrate on measure-

ments over the outer portion of the wing span, and both

round and square tips were examined.

The full-span (square tip) pressures are shown in

figures 21 and 22 for all 12 spanwise stations where

both upper- and lower-surface measurements were made.

Only the results for conditions of c_ = 4 °, 8°, and 12°
at Re = 1.5 x 106 and 2.5 x 106 are presented. For all

conditions, there is a gradual reduction in pressure as

the tip of the wing is approached, and there is a peculiar

distortion over the upper surface along the outermost

3% of the span (y/s > 0.97). This distortion in the

chordwise pressure distribution has been observed in

other experiments (refs. 8, 32-35) and is believed to
be due to the vortex (or vortices) that forms on the

suction side of the wing tip. The integrated effect of

the vortex is to produce an increase in the lift over the

region near the wing tip (fig. 23). Back along the span
in the inboard direction, the lift is observed to level

off except for a slight increase at the innermost loca-

tion y/s = 0.094. This departure from the expected

asymptotic value is attributed to the presence of the

supporting endplate.
The force and moment variations along the span of

the wing for a = 4 °, 8 °, and 12° at different Reynolds

numbers (fig. 24) show a large change in the lift as the

wing tip is approached, and a comparatively modest

increase near the tip itself. This behavior is in contrast

to the rather slight change in the drag and the pitching
moment as the wing tip is approached, and the signifi-

cant increase in the drag and the "nose-down" moment

that occurs near the tip. The Reynolds number has
some effect on the loads at all locations along the span

(fig. 24), and, when integrated over the entire span

(fig. 25), has an increasing effect as a is increased.

The pressure over the outer portion of the wing
is shown for the square-tip case (figs. 26-28) and for

the round-tip case (figs. 29-31) under conditions of
o_ = 4 ° , 8 ° , and 12 ° at Re = 1.0 x 106 , 2.0x 106 ,

and 2.9 x 106. At two spanwise stations near the wing

tip the pressure was measured only on the upper sur-
face. The y/s values for these two cases will dif-

fer by 2.3% because of the addition of the round tip,
which increases the span by half of the airfoil thick-

ness (tmaz/2). For both the square- and round-tip

cases, the pressure distortions due to the tip vortex

are confined to the upper surface and along the outer

4% of the span (y/s > 0.96). This same behavior

has been observed in pressure measurements made on

a rotor (rectangular and untwisted NACA 0012) with

round and square tips (ref. 33). In the region near

the tip of the wing, the pressure distributions assume

shapes that are distinctive under conditions of high lift

(a > 8°). After the suction peak that occurs near the

leading edge, the pressure curve exhibits two strong
undulations in the square-tip case and only one undu-

lation in the round-tip case (albeit this chordwise row

of pressure orifices is located 2.3% farther inboard after
the round tip is installed). The Reynolds number ap-

pears to have little effect on the pressure undulations in
the square-tip case, whereas the pressure undulation is

larger and more responsive to changes in the Reynolds
number in the round-tip case. The apparent insensitiv-

ity to Reynolds number in the square-tip case may be
due to the transition-fixing nature of the sharp edge in

this case, as the flow accelerates around the tip of the

wing to form the trailing vortex that is developing on

the upper surface. While the vortex causes an increase
in lift near the wing tip with increasing angle of at-

tack in both the square- and round-tip cases (figs. 32
and 33), the increase becomes noticeably large in the

round-tip case for the combination of high angle of at-

tack (a > 8°) and high Reynolds number (recall, in

figs. 29-31, the corresponding large pressure undula-

tion near the trailing edge in the round-tip case). The

rather large drag and pitching moment loads that are
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observednearthetipof thewingin thesquare-tipcase
areseento beevenlargerin theround-tipcase.

Thelift, drag,andpitchingmomentvaluesfor the
full wingcanbeestimatedby integratingthesection
loadsoverthespanandassumingthatthe innermost
valueat y/c = 0.58 remains constant up to the wing

root at y/c = 0.0. The results obtained at different

Reynolds numbers show a modest and generally in-

creasing spread as c_ is increased toward stall (fig. 34).

The peculiar distortion in the chordwise pressure

distribution near the wing tip (recall fig. 27(c)) was
also observed in an earlier experiment (archived run:l/

frame:19 data from ref. 37). In agreement with the

present experiment, the earlier results indicate that the

distortion is confined to the outermost 3% of the span

(fig. 35). The dimensional characteristics of the pressure-
instrumented wings used in these two tests are shown

in figure 36(a), along with the nondimensional dis-

tances from the wing tip (y*/c) where the results can

be compared. Although the results from these two

experiments are in good qualitative agreement, the ref-

erenced data are consistently lower along the upper

surface. By imposing estimates for the lower-surface

pressure in the Spivey-Morehouse data at the incom-

plete spanwise stations (see fig. 35), the pressure can be

integrated to obtain the lift and a comparison made at
corresponding values of y*/c (fig. 36(b)). Again, the

results are qualitatively similar but significantly differ-

ent in magnitude. This difference may be attributed

to the following two factors: first, wall corrections to

the present data have not been made, and second, tuft

studies during the Spivey-Morehouse test revealed that

a large updraft (along the wing span) from an opening

around the base of the floor-mounted model may have
produced sizable wing-wall effect_ when those data

were acquired.

Wing Circulation

Calculated wing circulation coefficients are pre-
sented for the 3D wing configuration at Re = 1.5 × 106

and c_ = 12°, for both a square- and a round-lateral

tip. Based on velocity integrations around a rectangu-

lar path of fixed size in the x-z plane (figs. 10,11), the

calculated circulation (_ VxAx + _ VzAz) at various

span stations are presented in table 7 and figure 37. The

circulation results are given in nondimensional form as

-2F/cVoo since this quantity is stated to be equal to

the lift coefficient, CI, per unit of span, according to

the Kutta-Joukowski theorem for 2D incompressible

(M_ < 0.3) flow. In each case, the results are ref-

erenced to the tip of that particular wing, and in each

figure is included a projection of the wing thickness

over its entire span.

Using the smallest wing (c = 0.305 m) as a ba-

sis for comparison, the addition of a round tip (which

causes an increase in y/c of 0.13) does not appear to

have proportionately extended the circulation distribu-

tion toward the tip (fig. 38(a)). If the circulation dis-

tribution were to be physically keyed to the spanwise

limits of the wing, then one curve would have over-
lain the other. It is also evident that a 23% increase

in the aspect ratio of the wing (produced by adding a

tip section) has no effect on the circulation distribution

(fig. 38(b)). This suggests that in both cases the wing

aspect ratio is sufficiently large so that neither the wall

boundary layer nor the image plane at the root has a

detectable effect. Maintaining the same aspect ratio

and changing only the chord of the wing yields a sim-

ilar circulation curve (fig. 38(c)). This result indicates

that the chord may be the correct reference length for
nondimensionalizing the spanwise distribution of cir-

culation. A final area of interest is the spanwise dis-
tribution of lift as it is derived from either circulation

or surface pressure (fig. 38(d)). In both cases the same

wing is used (c = 0.518 m). Without considering wall

corrections, it can only be stated that the same trend

occurs over the inboard region. Over the region near

the tip, however, a major difference in the shape of
the lift curve appears. Whereas the circulation-derived

lift smoothly diminishes as the tip is approached, the

pressure-derived lift displays a substantial perturbation

as a result of the trailing vortex that forms over the

upper surface. This behavior has been observed in

other experiments (refs. 10, 36, and 37), and may

indicate a limitation in the application of circulation
measurements.

In the circulation-lift relation, it is assumed that

the contour of integration contains all of the rotational

flow. This is not possible in real flows because the

downstream boundary must cut across the viscous wake.
Contours taken close to the airfoil, that have down-

stream boundaries that are perpendicular to the free-
stream velocity, will not include any contribution to

the lift arising from changes in total pressure across the
wake, and will therefore be lower than the correct val-

ues (ref. 38). The error may not be significant as long

as the enclosed wake contains nearly equal amounts

of positive and negative vorticity, but this condition

is highly suspect in the tip region of the wing, where



theflow isdominatedbytheformationof astrong3D
trailingvortex.

Trailing Vortex

Wake velocity measurements are presented for the

3D wing configuration for various combinations of con-
ditions. These conditions include three aspect ratios,

three chord lengths, three tip-image plane positions, a

square- and a round-lateral tip, presence and absence
of a boundary layer trip, angles of attack of 4 ° _< a <
12 °, and Reynolds numbers of 1x 106 _< Re _< 3 × 10_.

Measurements were also made of the trailing vortex

at numerous downstream stations ranging from 0.1 to

13.0 chordlengths behind the airfoil. A majority of the

velocity measurements were made at various down-
stream distances from the wing tip (x/e referenced to

the trailing edge). A detailed summary of the con-
ditions under which these measurements were made

is presented in tables 7-10. Velocity components Vz

(oriented parallel to the free-stream direction) and Vz

(oriented in the vertical direction) were obtained along

a one-dimensional survey (in the spanwise direction)

across the core of the vortex (fig. 12(a)). A limited
number of measurements was also obtained over a 2D

area centered around the core of the vortex (fig. 12(b)).

Streamwise development- To examine the ef-

fects of various trailing-vortex determinants (table 11),

the square-tip wing with AR = 6.6 (referred to as "ba-

sic" in the following figures) is used as the reference

case. Viewing the vortex from a downstream position,
the vertical and streamwise components of velocity are

first examined at seven locations (from x/c = O. 1

to x/c = 6) behind the trailing edge of the basic

wing (fig. 39). The flow condition for this case was
Re = 1.5 x 106 with Vc_ = 46 m/sec (Moo = 0.13).

A projection of the wing profile is included in each plot
for the convenience of visualizing the relative position

of the vortex during its downstream maturation. Just

behind the airfoil (at x/c = 0.1), the vertical compo-

nent of velocity reaches nearly 90% of the free-stream

velocity. The distortion in the velocity profile (the

double inflection before the peak is reached), which

is most evident along the outboard portion of the vor-

tex, is probably due to a secondary vortex (refs. 8, 9,
23, and 39). This is the same vortex that was believed

to have produced the second undulation in the pres-
sure distribution near the wing tip, in figure 27(c). An

alternate view (refs. 14, 24, and 40) is that the distor-

tion in the velocity profile is due to a crossing of the

wing-shear layer as it wraps around the trailing vortex.

This distortion rapidly fades (completely disappearing

by x/c ,_ 1) as the trailing vortex evolves. The stream-

wise velocity component initially shows a 50% excess
over the free-stream velocity. A distortion in the ve-

locity profile as a result of the secondary vortex is also

present. In this case the relative velocity in the vortex

core is mostly away from the wing; however, either an
excess or a deficit condition is possible, depending on

the spanwise load distribution near the tip of the wing

(ref. 41). When one examines the velocity profiles at

spanwise locations away from the immediate vicinity
of the vortex, it is apparent that free-stream character-

istics are generally not achieved. For the streamwise

velocity component it is expected that Vz/Voo ---* 1,
and for the vertical velocity component that IVz/Vool

(inboard) > IVz/V_I (outboard), because of down-

wash behind the wing. Deviations from this expected
behavior are believed to be caused by blockage (since

an upstream pitot-static probe was used to determine

V_) and by the effects of the image vortex near the

wing tip.
As the trailing vortex moves downstream and the

maximum circumferential velocity in the vortex de-

creases because of viscosity (fig. 40), one can argue

that the pressure increases and causes the streamwise

component of velocity to decrease (ref. 42). If the dis-
tance between the vertical velocity peaks is considered
to be a measure of the vortex core, the core diame-

ter appears to grow rapidly in the immediate region

downstream of the trailing edge of the wing, and then
maintains a somewhat constant value (about 70% of the

wing thickness, or 11% of the chord) over the remain-
der of the first six chordlengths of travel (fig. 41(a)).

In an earlier experiment (ref. 16) involving a NACA

0012 with a square tip, the core diameter was found to

be about 12% of the wing chord and it remained nearly
constant with downstream travel. A core size equaling

10% of the blade chord has also been reported in a

model rotor experiment (ref. 43). Since the core is so
small, the rotational speed within the vortex can reach

very high values. For example, just behind the wing,
where the core radius measures about 2.7 cm and the

maximum vertical velocity is around 37.7 rrgsec, the

rotational speed is 13,333 rpm. This explains why the

central core region appears clear in many attempts to
visualize the vortex (particles that are heavier than air

would be rapidly centrifuged out of the core of the
vortex). The center of the vortex moves inboard about
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25%of thewingchord(fig.41(b)),andupwardtoapo-
sitionslightlyabovethereferencelinepassingthrough
thequarter-chordpitchaxis(fig.41(c)).Sincethevor-
texwouldnormallybeexpectedto movedownwardin
freeair becauseof thedownwashbehindthewing,the
upwarddirectionof thevortexpathisattributedto wall
effects(specifically,theimagevortexon theopposite
sideof thewall fromthewingtip).

A velocitysurveyoveranareacenteredaround
thevortexcoreis shownin figure42 for threeloca-
tionsnearthewingtrailingedge(x/c = 0.1_ 0.5).
Theareacoveredby eachsurveymeasuresaboutone
chordin thespanwiseandverticaldirections(in all
pictorialcontourplotsthewingis notshowntoscale).
Thecontourplot for theverticalvelocitycomponent
corroboratesthe presenceof two velocitypeakslo-
catedinboardfroma lineprojecteddownstreamfrom
the wingtip. Thecontourand3D surfaceplotsfor
thestreamwisevelocitycomponentshowthevelocity
excess(relativeto freestream)within thevortexcore
andthevelocitydeficitalongthewakeof thewing.
The streamwisevelocitydeficitis notuniformalong
thewake,but insteadappearsto form islandsalong
thespanof thewakethatfeedsinto thetrailingvortex
alongaspiralpath.

Chordlength effects- Three square-tip wings with

the same aspect ratio were used to study the effects of

chord length on the trailing vortex. The Reynolds num-

ber (Vocc/u) and circulation (CIV_c/2) were fixed
by keeping Vc_c and C l constant (c_ = 12°, in this

case). Specifically, the Reynolds number was 1.5 × 106

and the circulation (F) (just downstream of the trailing
edge) was about 8 m2/sec; and the chord and free-

stream velocity combinations were 0.305 m at V_ =

74 m/sec (Moo = 0.21), 0.412 m at Voo = 57 m/sec

(Moo = 0.16) and 0.518 m at V_ = 46 m/sec (Moo =

0.13). Although the Mach number did change, com-
pressibility effects are not considered to be a factor

when M_ < 0.3. Measurements made at x/c = 0.1

show (fig. 43) that the general shape of the veloc-

ity profiles are the same: the vertical component ex-

hibits the same distortion over the outboard portion
of the profile, and the streamwise component exhibits
the same number of inflections across the vortex core.

The velocity deficit that occurs further inboard (lyl >
200 ram) is caused by the viscous wake that is shed

from the trailing edge of the wing. The deficit region

appears to scale with the wing chord since it progresses
even further inboard as the chord increases. The maxi-

mum velocities (relative to free-stream values that vary

inversely with the chord) are dependent on the chord

length of the wing. The same can be said about the

velocity components measured at x/c = 4, except that

no appreciable deficit is observed in the streamwise

profile. The streamwise component within the vortex

core has a maximum (velocity excess) value that in-

creases with chord, and a minimum (velocity deficit)

value that decreases with chord (figs. 43 and 44). The
relative size and position of the vortex core shows a

weak dependence on the chord length of each wing at
x/c = 0.1, and a much stronger dependence on the

chord at x/c = 4. The relative diameter of the core in-

creases with decreasing chord at the distant streamwise

station (fig. 45). The spanwise displacement of the
core is observed to move farther inboard with decreas-

ing chord, whereas the vertical displacement increases

(moving upward) with increasing chord length. Al-
though the vertical displacement should be downward

in all cases (in free air), the fact that the vortex moves

farther upward as the chord increases is in keeping

with the influence of tunnel wall effects since the wing
tip moves progressively closer to the wall as the chord

increases (given the same aspect ratio).

Vertical and streamwise velocity contours centered

around the vortex core are shown for x/c -----0.1 behind
the trailing edge of the wing (fig. 46). Distinct islands

of velocity excess and deficit can be observed in the

streamwise component. Since the physical dimensions

of the survey were fixed, a greater extent of the span

(in terms of chord length) was covered for the wing
with the smallest chord (1.8 chords for the c = 30 cm

wing and 1.0 chords for the c = 52 cm wing). This

increased spanwise coverage shows that the 3D charac-
ter of the viscous wake is not limited to the immediate

neighborhood of the tip, but may actually extend over
a large portion of the wake.

Reynolds number effects- A single square-tip

wing with c -- 52 cm was used to examine the effects

of Reynolds number on the trailing vortex. Because

/9 could not be varied in this facility, Re was varied

through V_. The circulation was held fixed by re-
quiring that CIV _ remain constant, which meant that

any increase in the free-stream velocity (Voo) had to

be offset by a decrease in Cl (by reducing a). The
three Reynolds number conditions of Re = 3.0 x 106,
Re = 1.7 × 106 and Re = 1.1 × 106 were obtained

with Voo = 91 m/sec (Moo = 0.26) at a = 4 °, Voo =

51 m/sec (Moo = 0.15) at a = 7 ° and Voo = 32 m/sec
(Moo = 0.09) at c_ = 10°, respectively. The circula-

tion for this study was about 5 m2/sec. The velocity
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measurementsat x/c = 0.1 show that the distortion

in the vertical component moves farther outboard and
that the extrema in both the vertical and streamwise

components increase as the Reynolds number is de-

creased (fig. 47). The shape of the streamwise profile

at x/c = 4 indicates a change from a deficit to an ex-

cess condition across the vortex core as the Reynolds

number is decreased. Although the vertical component

(relative to free stream) decreases with Reynolds num-

ber (fig. 48), the magnitude of the free-stream velocity
increases so that the circulation around the vortex re-

mains constant. In other words, the vertical velocity

profiles would have similar magnitudes had they been

nondimensionalized using aVoo instead of merely Voo.

The diameter of the vortex core appears to be very
dependent on Reynolds number just behind the wing

(fig. 49(a)); however, this may be deceiving, because

the velocity peak (which is used to determine the core

diameter) is greatly affected by the outboard distortion

of the profile. The core diameter shows no signifi-

cant dependence on Reynolds number at x/c = 4. The

spanwise position of the core is insensitive to Reynolds

number just downstream of the wing. The vertical po-

sition shows a spread which is caused by a combination

of Reynolds number and the fact that a is different for

each case. The spanwise and vertical positions of the
core show some dependence on Reynolds number at

x/c = 4, with the Re = 3 × 106 case being somewhat
distinct from the other two cases.

The vertical and streamwise velocity contours

around the core of the vortex are presented for each

Reynolds number at a location x/c = 0.1 behind the

trailing edge of the wing (fig. 50). The vertical com-

ponent shows a progressive increase in the number of

contour lines as the Reynolds number is decreased (cor-
responding to an increase in a). The streamwise com-

ponent shows a steady growth in velocity excess while

the regions of large velocity deficit become more iso-

lated as the Reynolds number is decreased.

Circulation effects- The angle of attack of a square-

tip wing with c = 52 cm was varied from a = 4 ° to
a = 12° to examine the effects of circulation on the

trailing vortex at Re = 1.5 x 106. Based on the vertical

velocity component near the trailing edge of the wing,

the nondimensional circulation (r/cVoo) is estimated
to be 0.15 at a = 4 ° , 0.25 at a = 8 ° and 0.35 at

a = 12 °. Since c and Vo¢ were held constant, these

values show that F varies linearly with a. The velocity

measurements at x/c = 0.1 indicate that the distortion

in the vertical component moves inboard but retains

approximately the same magnitude (while the primary

vortex peak diminishes) as the circulation (or a) de-

creases (fig. 51). The streamwise velocity component

shows that the velocity excess portion of the profile is

a pocket of flow that reverses and becomes a velocity
deficit as the circulation is reduced to a = 4 °. Farther

downstream at x/c = 4, the streamwise component

progresses from a velocity excess condition to a deficit

as the circulation is reduced. An earlier experiment

on a rectangular wing with the same cross section also

showed a streamwise component that changed from a

predominantly excess profile to a deficit as a was de-

creased (ref. 44). The same trend has been reported

for wings with different cross sections (ref. 45). The

maximum vertical velocity exhibits a strong propor-

tional dependence on circulation at both x/c = 0.1

and x/c = 4 (fig. 52(a)). The maximum streamwise

velocity also shows a strong proportional dependence

on circulation at x/c = 0.1 (fig. 52(b)), whereas at

x/c = 4 the core velocity exceeds the surrounding

values only for a = 12 °. The diameter of the vor-

tex core does not appear to have a clear dependence

on circulation, especially near the trailing edge, where

the distortion in the profile confounds a simple defini-

tion for the vortex diameter (fig. 53(a)). The spanwise

displacement of the core shows little dependence on

circulation at x/c = 0.1, whereas there is a sizable
(but unordered) dependence at x/c = 4 (fig. 53(b)).

The vertical displacement of the core follows the an-

gle of attack of the wing and retains that order through

x/c = 4 (fig. 53(c)).
The vertical and streamwise velocities around the

vortex core when Re = 1.5 × 106 are shown for three

values of circulation at x/c = 0.1 behind the trailing

edge of the wing (fig. 54). The vertical component

shows a progressive decrease in the contour range as
the circulation is decreased. The streamwise compo-

nent shows a decrease in the velocity excess and a
more numerous and even distribution of islands of ve-

locity deficit along the wake of the wing that is feed-

ing into the trailing vortex as _he circulation is de-
creased. The same trends were characteristic of the

results when Reynolds number was the variable. Since

changes in Reynolds number and circulation both in-

volved changes in a, it may be that a is the more
fundamental determinant that dictates the behavior of

the trailing vortex and its surroundings.
Focusing on the maximum vertical component of

velocity, and recalling the results when F was varied
by changing a at constant Vc_ (fig. 52(a)) as well as
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theresultswhen1"wasconstantwhilea and Vo_ were

changing (fig. 48(a)), one can see a trend that depends

predominantly on a. Combining the results from these
two figures shows that there is indeed a nearly lin-

ear relationship between Vz/Voo and a (fig. 55). The

slope of the curve decreases as x/c increases, and there
appears to be no obvious dependence on Voo. This

behavior was also observed in an earlier experiment

(ref. 30) on a NACA 0015 wing with a square tip.

Aspect ratio effects- Three square-tip wing sec-
tions with the same chord (c = 30 cm) were combined

to study the effects of aspect ratio on the trailing vortex.
The Reynolds number and circulation were held con-

stant and the aspect ratio varied from 6.6 to 9.6 (based

on wing-tip-to-wing-tip distance). For this study, Re =
1.5 × 106 (Vc_ = 77 m/sec and Moo = 0.22) and

F = 8 m2/sec. Measurements made at x/c = 0.! indi-

cate that there are only minor differences between each

of the aspect ratio cases (fig. 56). The major distin-

guishing characteristics, such as the outboard distortion

in the vertical velocity profile, the inflections in the

streamwise profile as the vortex core is traversed, and

the streamwise velocity deficit in the wake of the wing

farther inboard, are all present for each aspect ratio.

There also appears to be little difference between the

velocity profiles at x/c = 4, except for the "atypical"
streamwise deficit when AR = 8. I. Although referred

to as atypical, it may be that this case is actually more
representative of the flow in all three cases, because the

survey was more "centered" across the vortex and/or

because the performance of the vortex meter during

those particular measurements was better and thereby
influenced the choice of data that was admitted for

conditional averaging. Overall, the maximum veloci-

ties (relative to free stream) do show some dependence

on aspect ratio (fig. 57); however, the behavior is too

inconsistent to draw any conclusions. The relative size
and position of the vortex core show a more rational

dependence on aspect ratio (fig. 58). The relative di-

ameter of the vortex core decreases as the aspect ratio

is increased (a total reduction of 23% from AR = 6.6

to AR = 9.6). The spanwise displacement of the core

is farther inboard for lower values of aspect ratio. The

vertical displacement of the core is increased in an up-

ward direction as the aspect ratio is increased; however,
this is believed to be a tunnel-wall effect and therefore

not representative of free-air behavior.

Velocity contours showing the vertical and stream-

wise components over an area around the core of the

vortex are presented for each aspect ratio at a loca-

tion x/c = 0.1 behind the trailing edge of the wing

(fig. 59). All three cases appear to be qualitatively

similar, with the vertical velocity showing a well de-

fined set of closed contours over the outboard portion

of the vortex and more open contours over the inboard

portion because of the downwash behind the wing. The

viscous wake behind the wing can be clearly identified

in the contour map of the streamwise velocity com-

ponent. The numerous pockets of velocity deficit that
make up the viscous sheet feeding into the vortex again
attest to the three-dimensional character of the wake

shed by the wing.

Leading-edge trip effects- A serrated tape was

placed along the span near the leading edge of the wing

to produce a boundary-layer trip. The effects of the trip

on the trailing vortex were examined at x/c = 4 for
Re = 1.5 × 106 and c_ = 12° with the wing having

c -- 30 cm. Although there is a slight reduction in
the maximum vertical velocity with the trip, the most

obvious effect appears in the streamwise component
of velocity, which changes from a small excess veloc-

ity to a large deficit condition (figs. 60 and 61). The

trip increases the diameter of the vortex core and de-
creases its inboard movement along the span, but has

no detectable effect on its vertical position (fig. 62).
Image plane effects- To determine what effects

the proximity of the test-section wall might have on

the trailing vortex, an endplate (equal in size to the

wing-support endplate) was placed at different posi-

tions away from the tip of the wing (fig. 5). The

trailing vortex from the c ---=30 cm wing (square-tip,
AR = 6.6) was examined at x/c = 4 with c_ = 12°

and Re = 1.5 x 106 . Without an image endplate,

the test-section wall became the image plane and rep-

resented the "far image" condition. In this case the

far-image plane was located 5.7 chords away from the

tip of the wing. When the image endplate was in the

"near image" position, the distance between the image

plane and the wing tip was 1.9 chords. This config-

uration corresponded geometrically to the c = 52 cm

wing case, which had the same aspect ratio and was

also 1.9 chords away from the opposing wall. The

largest effect of the presence of the image plane is on

the streamwise component of velocity (fig. 63). The

maximum vertical velocity increases slightly and the

streamwise velocity deficit increases significantly as

the image plane approaches the wing tip (fig. 64). The

diameter of the vortex core remains nearly the same

while the path of the core is drawn toward the tip and
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upwardsastheimageplaneapproachesthewingtip
(fig. 65).Thisdiversionof thepathof thetrailingvor-
tex is in keepingwith theanticipatedinfluenceof the
imaginaryvortexontheothersideof theimageplane,
andseemsto offer a convincingexplanationof why
thetrailingvortexwasobservedto moveup insteadof
downasit traveleddownstream.

Round-lateral edge effects- Each square-tip
wing couldbeconvertedto a round-tipwing by the
additionof anendcap(fig. 1). Theconversionto a
roundtip causestheplanformto beextendedby an
amountequalto half of the thicknessprofileof the
wing. Whenviewedalonga line from the trailing
edgeto theleadingedgeof thewing,thetip appears
to be extendedby a semicircularsectionwith a ra-
diusequalto half themaximumthicknessof thewing.
Thetrailingvortexwasexaminedat :c/c = 4 using a
c = 30 cm wing with Re = 1.5 x 106 , and in more

detail at z/e = 0.1 using a e = 52 cm wing with
Re = 2.0 x 106 (Voo = 59 m/sec and Moo = 0.17).

Velocity measurements at :c/c = 0.1 show that the

round tip not only eliminates the distortion along the

outboard portion of the vertical component, but also re-
duces the number of inflections in the streamwise com-

ponent within the vortex (fig. 66). At z/c = 4 how-

ever, the profiles appear to be quite similar. The max-
imum vertical velocity is significantly higher for the

round tip at :c/c = 0.1, although it becomes lower than

that for the square tip after reaching :c/c = 4 (fig. 67).

The maximum streamwise velocity remains higher for

the round-tip case, but the difference is barely distin-

guishable at :c/e = 4. The diameter of the vortex core

is smaller with the round tip, but reverses after reach-

ing z/c = 4 (fig. 68). When the behavior of the core

diameter and that of the maximum vertical velocity are

looked at together, the circulation associated with the

vortex development for both the square and round tips

appears about the same. The vortex leaves the trailing

edge at the same spanwise location, but at z/c = 4

it has moved farther inboard when the tip is round.
Since the round tip extends the wing span by 7.5% of

the chord, the position of the trailing vortex relative
to the wing root is about the same in both cases. The

vertical position of the vortex is initially higher for the

round tip, but at z/c = 4 the vortex from the square

tip is slightly higher.

The velocity contours around the vortex at :c/c =
0.1 are very similar (fig. 69). Therefore, it appears

that the distinguishing features that were evident in the

profiles taken across the center of the vortex (fig. 66)

are due to factors that do not have an area-wide in-

fluence. Examination of the contours in more detail

(fig. 70) only confirms the presence of steep gradi-

ents and high velocities already observed for the vor-

tex from the round-tip wing. Both contour maps are

irregular and contain several isolated islands of peak

velocity, but no specific features appear that would ex-

plain or corroborate the distortions always observed at

z/c = 0.1 for the square-tip wings along the outboard

portion of the vertical-velocity profile.

CONCLUDING REMARKS

The effects of the round-lateral edge appear to be

confined to the pressure near the wing tip and the veloc-

ity distribution within the trailing vortex near the wing

trailing edge. The round edge eliminates the additional

pressure undulation on the wing surface as well as the

outboard distortion in the vertical velocity component,

indicating that a secondary vortex over the wing (and in

the near wake) is a characteristic of wings with square

tips.

The lift distribution (from pressure integrations)

diminishes along the wing span as the tip is approached,

but exhibits an abrupt increase over the outermost 4%

of the wing in both the round- and square-tip cases.

Drag and pitching moment deviations in the tip region

are even greater. These force and moment increases

are due to the presence of the trailing vortex over the

upper surface of the wing tip. The Reynolds number

had some effect on the pressure distribution over the

wing in the square-tip case, and greatly affected the

pressure on the suction side near the wing tip in the

round-tip case. The section load variations along the

wing were largest for the round-tip case, as were the
maximum velocities within the trailing vortex close to

the wing.
Circulation-box measurements did not capture the

effect of the tip vortex in either the round- or square-tip
cases, but instead showed a smooth decline in the lift

all the way to the wing tip. This result may indicate a

limitation in the application of simple circulation con-

tours to obtain lift in regions of a wing with highly
three-dimensional flow.

Within the trailing vortex, the vertical velocity can

reach 110% of free stream and the streamwise velocity
can reach 50% of free stream when the vortex is close

to the wing. Given the small size of the vortex core,

the rotational speed can be as high as 44,000 rpm. In
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all cases,thepeakvaluesof velocity diminish with

downstream distance from the wing. The streamwise

velocity within the viscous wake that is shed from the

wing is not uniform; instead, islands of peak velocity

occur in the spiraling sheet that feeds into the trailing
vortex. Near the wing the trailing vortex appears to

be asymmetric (both components), and it has definite

zones where the streamwise velocity both exceeds and

falls behind the free-stream value. As the trailing vor-
tex moves downstream, a streamwise deficit condition

generally prevails at low a and an excess condition

prevails at high a (except when the boundary layer is

tripped and when the opposing image plane is brought
close to the wing tip). When referenced to the free-

stream velocity, the maximum vertical velocity of the

vortex is directly dependent on c_ (almost linearly) and

is independent of Re.

The center of the vortex leaves the wing with an

inboard displacement from the tip equal to about 5%

of the wing chord, and a vertical displacement that

depends on a. Tracing the downstream path of the

vortex shows a continuing inboard movement of the

core that can be as large as 20% of the wing chord in
the spanwise direction. Increasing the aspect ratio is

similar to decreasing the distance to the image plane

(opposite the wing tip), in that both result in a spanwise

decrease and a vertical increase in the displacement of

the path of the trailing vortex. The round-lateral edge
does not cause any permanent change to the vortex.

At a distance of 4 chords downstream from the wing,

the round- and square-tip velocity profiles are quite
similar and even the path of the trailing vortex from

the round tip adjusts to match that of the square-tip

wing. The boundary-layer trip had the largest effect on

the downstream diameter of the vortex core (causing a

30% increase), but in general the diameter at x/c = 4
was about 65% of the wing thickness (or 10% of the

wing chord).
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APPENDIX

WALL CORRECTIONS

Solid and Wake Blockage

When measurements are obtained on a lifting air-

foil in a flow that is confined by wind tunnel walls, cer-

tain aerodynamic quantities (such as the pressure and

lift coefficients) are altered from their free-air values

because of blockage and a distortion of the streamlines.
In a closed test section, blockage has the effect of pro-

ducing a more dense flow and a higher velocity in the

region where the airfoil is located. These increases are
due to a streamwise continuity adjustment that can be

modeled by an infinite array of airfoil images located

beyond the actual tunnel walls. A change in stream-

line curvature (caused by these airfoil images) has the

effect of imparting greater "apparent" camber to the

airfoil (ref. 46) and inducing a higher angle of attack
(or an increase in the effective airfoil incidence).

In the present experiment, the lift coefficient is

ultimately derived from the measured pressure distri-

bution on the surface of the airfoil. Considering pres-

sure first, the nondimensional pressure coefficients are

based on the "free-stream" static and dynamic pres-

sures that are obtained from a pitot-static probe placed

upstream in the test section. To emphasize that these

reference pressures will be different from the local tun-
nel values because of density and velocity changes

arising from blockage effects, the corrected pressure
coefficient is stated as

p - (p_ +/',p_)
Cp = q_u + Aqoc (A- I)

where the subscript u denotes an uncorrected value

and the symbol A stands for the difference between

corrected and uncorrected values. Letting e represent

the total correction factor accounting for both solid

and wake blockage, the corrected free-stream velocity
becomes

Vco = (1 + e)V_u (A-2)

In other words, Vc_u is the "free-stream" velocity at an

upstream location that is not influenced by the airfoil

(measured with an upstream pitot-static probe), while

V_ is a corrected value that is more representative of
the constricted flow in the test section where the airfoil

is actually positioned. If the flow is incompressible

(thereby justifying p_ + qoo = constant), and use is
made of the approximation (1 + e) -2 _ (1 - 2c), then

the corrected pressure coefficient from equation (A-l)
becomes:

Cp = Cpu(1 - 2e) + 2e (incompressible) (A-3)

where Cpu is the pressure coefficient that would be
formed using upstream reference pressures (Pocu and

qccu), without regard for blockage effects. To illustrate

the impact of blockage on the measured pressure dis-

tribution, results from the present experiment are com-
pared with blockage-adjusted values (fig. 71) under the

arbitrary assumption that e = 0.05 (corresponding to a

5% increase in free-stream velocity). To more directly

reflect the change that is observed in the pressure dis-

tribution, equation (A3) is rearranged to read

ACp = 2e(1 - Cpu) (incompressible) (A-4)

This arrangement makes clear (for incompressible flows)

that no change in the pressure coefficient occurs at

the stagnation point (where Cpu = 1), and since else-

where Cpu < 1 always, the resulting change is ev-

erywhere positive; that is, Cp always becomes more

positive, if it changes at all, as a result of blockage in

a closed test section. Integrating the pressure distribu-

tion over the airfoil surface yields a vector from which
the lift coefficient can be obtained (if the viscous com-

ponent is neglected). Comparing the uncorrected with

the blockage-corrected value of the lift shows that for

the example case of 5% blockage, an 11% decrease in

C l results (fig. 71). The lift coefficient will decrease
even more once the correction for streamline curvature
is included.

Considering now the more general compressible

flow case, the corrections explicitly feature the Mach
number and can be summarized (ref. 47) as

ARe = eReu (A-5)

Aqec = _(2- M2u)qocu (A-6)

AMoc = e(1 + 0.2M2u)Mc_u (A-7)

ACp = e(2- [2 - M2u]Cpu) (1-8)

The above relations governing the corrections to Re,

q_, M_, and Cp are assumed to apply to both 2D
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and3D configurations.Next comesthe morediffi-
cult taskof specifyinga valuefor theblockagefac-
tor, e, that appearsin eachof theserelations.Nu-
merousformulationshavebeenrigorouslydeveloped
for caseswheretheobjectcausingtheblockagecan
be simplydescribedandimagedwith potential-flow
equations.However,modelsandsupportsareoften
complicated,andin suchcasesaroughapproximation
for theblockagefactor(applicableto either2D or3D
configurations)basedona simpleareareductionhathe
testsectionmayhaveto suffice(ref.46):

object frontal area
e = n (A-9)

test section area

The coefficient n = ¼ is appropriate when the airfoil

for which the aerodynamic quantities are to be cor-

rected is itself responsible for the blockage. The effect

of blockage on elements that are located away from a

given blocking object will be greater, and therefore a

much larger value than ¼ may be more suitable. The

frontal projection for the NACA 0015 airfoil at various

angles of incidence is shown in figure 72.

2D Blockage Factor

If the flow is considered to be two dimensional

and incompressible, then the solid and wake contri-

butions to the total blockage for a symmetrical airfoil
(ref. 46) become

C _-- %olid + _wake (A-10)

(e = 1 +0.8 + --_Cdu (A-11)

In the more general case, compressible effects

may be present and the blockage-producing object may
also be off center in the test section as well as at some

angle of incidence to the oncoming flow. For these

conditions the blockage factor (ref. 47) becomes

e : 5_]%olid + ewake (A- 12)

(=@6 1+1.2/3 + 4hfl 2

x (1 +0.4M2u) Cdu (h-13)

where fi _> 1 and is introduced to account for objects
that are offset from the centerline of the test section

(fig. 73):

6 = 1 + _cot 2 (A-14)

and 7? accounts for the increase in blockage due to

angle of incidence:

z/=(l+l.1/3_a 2) (A-15)

The symbol Aa represents the cross-sectional area of

the airfoil (fig. 74), and/3 is a compressibility factor:

/3 = (1- AInu),/2 (A-16)

The uncorrected drag coefficient Cdu, which consists

of both pressure and viscous contributions, was not

measured in this experiment. However, an estimate

for the drag should be sufficient for determining the

blockage, so it was taken from data already published

(fig. 75, based on ref. 48). For the airfoil used to mea-

sure pressure in the present experiment, with no offset,

a = 10°, and M_u = 0.3, the predicted blockage fac-

tor as calculated from equation (A-13) is e = 0.0065.
The above relations have been derived for some-

what ideal configurations. The actual "2D" setup in

this experiment (fig. 76) consisted of an airfoil sup-

ported between two endplates that were not centered

in the test section. In addition, a large fairing was

attached to the wall side of one of the endplates to

cover the pressure tubes that extended from the airfoil.

Clearly some approximations will be necessary.
If the blockage factor due to the endplates is to

be roughly estimated by equation (A-9), then the co-

efficient should be increased (say, to unity) since the

midspan of the airfoil will be in the far field relative

to each endplate. A better treatment of each endplate

and its respective offset can be given with equation

(A-13). In this case, the endplate (with leading- and

trailing-edge fairings) is assumed to be a long ellipse

at a = 0° with an estimated drag coefficient of 0.011
(ref. 49). In addition, w will need to be substituted for

h in equations (A-13) and (A-14) because the endplates

span the vertical dimension of the tunnel.

To illustrate the magnitudes of the blockage fac-

tors predicted for the airfoil and its various supports,

results using the different methods that have been dis-

cussed are shown in figure 77. It can be seen that the

airfoil contributes a comparatively modest amount of
blockage, whereas the endplates account for about 70%

of the blockage. The "approximate" estimates for the

endplates are based simply on the projected frontal area

of each endplate relative to the cross-sectional area of

the test section. Because the endplates have a much

greater blockage effect on the flow around the airfoil
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thanthe airfoil hason itself, blockageestimatesus-
ing equation(A-9) shouldbe madewith _ = 1 for
eachendplateand_ = ¼ for the airfoil. No con-
siderationis givento whereeachendplateis placed
in the test section,andthereforebothendplatesare
assignedthe sameblockagefactor. However,using
equation(A-13)to calculatetheblockagefactorsfor
theendplatesshowsthatthesupportendplateproduces
asignificantlyhigherblockagethantheimageendplate
becauseof itscloseproximityto thetunnelwail. Since
equation(A-14) is not recommendedfor objectsthat
areoffsetmuchover10%fromthecenterlineof the
testsection(ref.47), theblockagevaluefor thesup-
portendplateis expectedto beexcessive.Takingthis
intoconsideration,theapproximationsobtainedusing
equation(A-9) appearto be in goodagreementwith
thoseobtainedfromthemorerigorousapproachbased
onequation(A-13).

3D Blockage Factor

When the body is three dimensional, a doubly infi-

nite system of images is needed to specify the blockage

factor. Assuming that the airfoil is not offset from the

center of the test section, the solid and wake blockage

factor (ref. 47) is

Aas ( _) Ape = r/A4---_-fl3 1 + 1.2fl + 4bhfl--------_

x (1 + 0.4M_u ) CdOu (1-17)

where Ap is the planform area of the wing (Ap =
cs for a rectangular wing), CdOu is the uncorrected

drag coefficient at zero lift, and the test-section shape

parameter A is given by (ref. 50, with a replaced by

_ 2m b b)t =- E E _ [(m --F )_2 -F (?7t-)_11-1
'in _ -- ¢X) 'n -_. -- o_

+E
n=-c_

n-2[n 2 q- (s)21-1/2
h '

(form ¢ 0 and n ¢ 0) (A-18)

The terms El and _2 are introduced for convenience

and are defined by

: s)2(b)2]l/2_l [n 2 h- (m q- _

(A-19)

_2 [n2 + (m - s_2[b)211/2= /7) t_ J

The indices in equation (A-18) range over all values

except for those that define the physical location of the

airfoil at (m, n) = (0, 0). When the airfoil is sup-

ported off a side wall of the test section (half-span
model), the blockage is assumed to be that for a full-

span model (2s) in an imaginary test section (fig. 78)
twice the actual width (b = 2w). These equations can

be applied to compressible flows over a test-section

size range of 0.3 < b/h < 3.5 and a model span

range of 0 < 2s/b < 1 (ref. 47). Taking values

from the present experiment, for a direct wall-mounted

model with b/h = 2.86 and 2s/b = 0.56, the test-

section shape parameter becomes A = 2.78 (this is
equivalent to r = 0.5A(b/Trh) 1"5 = 1.2, in ref. 50).

For the airfoil in the present experiment, at a = 10°

and M_u = 0.3, the predicted blockage factor is
e = 0.0021.

2D Lift Interference

Not only do the walls of a closed test section im-

pose a choking effect on the flow, but they also cause
the streamlines to be distorted around the lifting airfoil,

and these distorted streamlines produce slightly differ-

ent aerodynamic characteristics than would result in

free air. In modeling the confining effect of the tunnel

walls (vanishing normal velocity), the airfoil images
induce a curvature in the flow that causes the lift as

well as the angle of attack to be too high. In an in-

compressible flow around a thin airfoil with a short
chord relative to the tunnel height, these quantities can

be corrected (ref. 46) by

o

Aasc = _ (Clu + 4Crn¼u) (incompressible) (A-20)

A Cl sc = -aCl (z (incompressible)(A-21)

with the subscript "sc'" denoting that the correction is
for streamline curvature (the result of lift interference)

l( c)2only. The coefficient a is defined as a _= _ _ .
For cases when compressibility and airfoil thick-

ness and length are significant (especially when c/h >

0.4fi), more accurate corrections to the angle of attack

and lift (ref. 47) are given by

= (1 + + c,+ c2))Q 

7r3fl (c) 492160 fl-h (41 + fl(79C0 + llC1

+C2 + 316'3 + 42C4))Ch, (1-22)
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mGs C -- 96 (2 +/3(14C0 - 2C]

7r4 (c) 4-5C2))Clu q- _ --_

x (210 +/3(1004C0 - 190Cl - 96C2

+106C3 - 69C4))Clu (A-23)

where

Co=-2 fo rrlz, dO7r c sin 0

Cn-7- 4fo rS_cosn0d0

2x
cos 0 = 1 - --

C

(n > 0) (A-24)

The coefficients Co and Cn are defined above for the

case of a symmetric airfoil, and 5 is the ordinate of the

upper surface of the airfoil. For the present case of a
NACA 0015 airfoil, the coefficients are

Co = 0.1205

C1 = 0.0755

C 2 = -0.0211

C3 = -0.0084

C4 = -0.0181

Note that equations (A-22) and (A-23) reduce to equa-
tions (A-20) and (A-21) when (1) the flow is incom-

pressible (/3 = 1); (2) 2/c << 1; (3) c/h << 1; and

(4) the airfoil is approximated by a single vortex at

the quarter chord. If the airfoil completely spans the

center of the tunnel, and Clu = 1.0, M_u = 0.3,

and c/h = 0.24, then the corrections predicted by
equations (A-22) and (A-23) are Ac_sc = 0.11 ° and

AClsc = -0.022.

3D Lift Interference

The approach for determining the 3D lift inter-

ference for a wing is similar to that for a 2D model,

except that now the image system is doubly infinite.

Although the wing may actually be a half-span model
that is mounted on a reflection plane in the test section

(thereby allowing the use of a larger chord model to

achieve a higher Reynolds number), the configuration

is treated as though it were a full-span model in a rect-

angular test section that is double the breadth-to-height
ratio (fig. 78). Even though the interference upwash
causes an increase in the lift as well as a more forward

inclination of the force vector, it has generally been

found more convenient to apply the correction entirely
to the angle of attack (refs. 46 and 51). This means that

the angle of attack for closed-tunnel compressible-flow

data will have to be decreased (refs. 47, 51, and 52)

according to

c_S1 "_ -_--EC/u (A-25)Aeesc = ¢5E (1 + 2/3h60 J

where At is the cross-sectional area of the tunnel (At =

bh for a rectangular tunnel, and b is twice the actual

tunnel breadth for a half-span model), and other terms
are defined as follows:

60 - rrh h_ 1 n-- 2--4-b+ rr-g = exp(27rnh/b) + 1

× n -3 + _ (--1)nS'l{ }
n=l

2 +oo m2 _ 2_ 2

Sl {_} = _ at- Z (m---2 4-_-_.5 (A-26)
m=--oo

l h F h nk 1 n_SE = _-_ {X} +4rr_ = exp(2rrnh/b) + 1

x ( Jl {rrnx} _ 2
7rnx /

1 v-'°° (2n + 1)!(2n + 2)!
F{X}

+ 1)!(n+ + 2)!

X Z p--2(n+l)
p=l

where _ = nh/b, X = 2s/b, and J1 is a Bessel func-

tion of the first order. If it is assumed that the half-span

pressure model in the present experiment (c/h = 0.24)
is mounted directly on a side wall of the test section

(h/b = 0.35 and X = 0.56) and that Moou = 0.3

and Ctu = 1.0, then the complete lift-interference cor-

rection can be determined from equations (A-25) and
(A-26) to be Ac_sc = 0.51 °.
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In summary,thecorrectedVoo is determined from

equation (A-2) and Re, qoo, Moo, and Cp are de-
termined from equations (A-5)-(A-8), where it is as-

sumed that the uncorrected free-stream temperature and

velocity are measured upstream of the airfoil. These

corrections all require a value for the blockage factor,

which in the case of a single obstruction can either

be estimated using equation (A-9) or calculated more
precisely using either equation (A-13) in the 2D case

or equation (A-17) in the 3D case. Some judgment

is required in deciding which blockage equation best

accounts for a particular obstruction in the test section.
The total blockage factor will be equal to the sum of

the individual factors that describe each of the flow dis-

turbances. Finally, the integrated loads that are derived

from the corrected surface pressure must be adjusted.

Both c_ and C l must be corrected according to equa-

tions (A-22) and (A-23) in the 2D case, whereas only

is corrected, according to equation (A-25), in the 3D
case.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, CA 94035-1000, August 20, 1991
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Table1. Pressuredistributionalongspan(2Dconfiguration)

Re inominal)
(2

1.5x 106 2 X 106 3 X 106

GO

2 °

4 °

o

o

I x 106 2.5 x 106

i0°

12° • •

14°

Table 2. Pressure-derived lift distribution along span (2D configuration)

Re (nominal)

1 x 106 1.5x 106 2 x 106 2.5x 106 3 x 106
[ r ,,

0° • •

2° • •

4° • •

6° • •

8° • •

10 ° • •

12° • •

14° • •
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Table 3. Pressure distribution over full wing span (square tip)

Re (nominal)

2 x 10 6I x 10 6 1.5 x 10 6

0°

2 °

4° • •

6 °

8° • •

10°

_2o • •

14o

2.5 x 106 3 x 106

Table 4. Pressure-derived lift distribution along full wing span (square tip)

Re (nominal)
(2

0

2 °

1 x 106

| n| ,

1.5 x 10 6

o

6° • • •
. .

so • • •
. .., ,,,,

lo° • • •

12° • •

14°

2 x 10 6 2.5 X 10 6 3 x 10 6
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Table 5. Pressure distribution over outer portion of wing

(square and round tips)

1.5x 1061 x 106

0°

2°

4° • •

6°

s° • •

10°

12 °

Re (nominal)
o_

2 × 106 2.5x I06 3 x 106

14 °

i|l

Table 6. Pressure-derived lift distribution over outer portion of wing

(square and round tips)

1 x 106

Re (nominal)

1.5 × l0 s 3 x 108

O

2 °

4° • • •

o

s° • •

10°

12° • • •

14 °

2 x 108 2.5 × 106
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Tip shape

Square

Round

Square

Round

Table7. Circulationmeasurementsalongwingspan

4

a, deg

7 8 10 12

c, cm

30 41 52

Re x 10 -6

1.1 1.5 1.7 2.0 3.0

AR

6.6 8.1 9.6

Table 8. Velocity measurements of wing-tip vortex (round tip)

a, deg

4 7 8 10 12

c, cm Re x 10 -6

30 41 52 1.1 1.5 1.7 2.0] 3.0

*2D survey around vortex core also available.

AR

6.6 8.1 9.6 .1 .2 .5 4 6 13

Table 9. Velocity measurements of wing-tip vortex (square tip with boundary-layer trip and

square tip with different image planes)

4

a, deg

7 8 10 12

c, cm

3O 41 152

Re x 10 -6 AR

II.1 1.5 1.7 2.0[3.0 6.618.1 9.6

x/c

.1 .2 .5 1 2 4 6 13
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Table10.Velocitymeasurementsof wing-tipvortex (squaretip)

a, deg

4 7 8 10

go

O_O

O_O

* 2D survey around

c, cm Re x 10 -6 AR x/c

12 30 41 52 1.1 1.5 1.7 2.0 3.0 6.6:8.1 9.6 .1 .2 .5 1 2

O0 • • •

O0 • iO

o!o • •
• • •

• • • •

• • • •

• • • •

• • •

I " • •
• • • Io
• • • !O

• • •

• • •

• go •

• O0

Le

vortex core also available.

6 13
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Table11.Wing-tip vortexstructuredeterminants

CHANGE

fixed

fixed

fixed

fixed

CHANGE

fixed

fixed

F
(CtVooc/2)

fixed

fixed

CHANGE

fixed

AR

fixed

fixed

fixed

CHANGE

Method

Vooc = constant

CIVoo = constant

vary

add tip extensions

/ ///

/

/

/

/

/

/

/

/

/

Figure 1. NACA 0015 wing with square tip, and end cap for forming round tip.
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Figure 2. NACA 0015 wings with round end caps and extensions.
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Figure 3. Installation of wing and endplates in the 7- by 10-foot wind tunnel.
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Figure 5. Plan view of test section showing positions of the image endplate.
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5 7 9 11 13

3 4 _ 6 _ 10 I 12 "j 14 15 16 17

Chord locations

Station x/c
1 0.010
2 0.022
3 0.040
4 0.090
5* 0.123
6 0.160
7* 0.203
8 0.250
9* 0.303

10 0.360
11" 0.412
12 0.490
13* 0.563
14 0.640
15" 0.712
16 0.790
17" 0.877
18 0,950

Span locations

Station y/s
1 0.994
2* 0.984
3 0.974
4* 0.959
5 0.944
6 0.899
7 0.843
8 0,773
9 0.692

10 0.597
11 0.491
12 0.370
13 0,238
14 0,094

*Upper surface only

8
7

1 I I t
12 13 14

10 11

• Upper and lower surfaces
o Upper surface only

Figure 6. Pressure measurement locations.
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Figure 7. Laser velocimeter setup in 7- by 10-foot wind tunnel.
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(a)

(b)

Figure 8. Vortex meter used to locate trailing-vortex core. (a) Cruciform and Hall-effect transducer

elements of vortex meter. (b) Vortex meter positioned near wing tip.
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Figure 9. Network required for control, acquisition, and display of test data.
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Wing tip

Voo

Figure 10. Coordinate system used for trailing-vortex measurements.
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Measurement locations for determining wing circulation.
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(b) Coarse grid around vortex core

Figure 12. Typical grids used to survey the trailing vortex.
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Figure 13.
surface.

Voo _ -- ..-_-

t/c = +0.1500

C1 = +1.4845
c2 : --0.6300
C3 = -1.7580
C4 = +1.4215
c5 = -0.5075

z/c = (t/c)(c I _/£-_ + c2(_/C) + C3(_/c)2 + C4(_/c)3 + c5(_/C)4 )

Coordinate system used for pressure measurements and equation for defining the NACA 0015

--O , ,, ii .....
I

I

I

J

I

I

I

! I

I

, :
Cp ," i

!

!

!

' ' _ I [ l

-.05 0 .05 -.05 0 .05
,_/c _/c

(a) c_= 0°; (b) oL= 12°

Figure 14. Example of approximation of leading-edge pressure from theory (ref. 31).
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Figure 15. Example of approximation of trailing-edge pressure from linear extrapolations.
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Figure 16. Example curve fit to pressure data and resulting local contributions to the force and moment

integrals. Data taken from 2D configuration, span location #9, Re = 2.5 × 106 and c_ = 0 °. The integrated

loads are Cn = 0.00, Cc = 0.00, Cl = 0.00, Cd = 0.00 and Cm = 0.00.

4O



-6

-4

Cp -2

0

| I I I

0 .2 .4 .6 .8 1.0

r

7

6

o 5
o,- 4
X

_- 3

._ 2

1

0

-1
0

2.0

1.5

o
o
o 1
X

E .5
0

0

-.5
0

Fixed _x/c = 0.001

I i i I

.2 .4 .6 .8 .0

-6

-4

Cp -2

0

.4

.2

o 0
o-.2

x¢_-.4

<_ -.6

m.8

2
-.09 -.06

I

I I I I I

-.03 0 .03 .06 .09

_/c

Aft

i I

.05 .10 .15
22/c

Fixed _x/c = 0.001

i I I I

.2 .4 .6 .8 1.0

CI an 2_

Cd

Ce

Figure 17. Example curve fit to pressure data and resulting local contributions to the force and moment

integrals. Data taken from 2D configuration, span location #9, Re = 2.5 x 106 and a = 12 °. The integrated

loads are Cn = 1.22, Cc = -0.23, Cl = 1.24, Cd = 0.03 and Cm = 0.03.
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y/s = 0.69 y/s = 0.49 y/s 0.24-6 =

-5 C I :-0.01 CI : 0.01 _ CI : 0.00
_"d : O.Ou Cd : 0.00 Cd : 0.00
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(a) Re= 1.5×106

Figure 18. Pressure distribution along span in 2D configuration.
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Figure 27. Pressure over outer portion of wing with square tip at Re = 2.0 x 106.
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Figure 69. Vertical and streamwise velocity contours around trailing vortex from c = 52 cm wing

(AR = 6.6) at Re = 2.0 × 106 and a = 12° for square- and round-lateral edges.
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